Neuronal tuning

In neuroscience, neuronal tuning refers to the hypothesized property of brain cells by which they selectively represent a particular type of sensory, association, motor, or cognitive information. Some neuronal responses have been hypothesized to be optimally tuned to specific patterns through experience.[1] Neuronal tuning can be strong and sharp, as observed in primary visual cortex (area V1) (but see Carandini et al 2005 [2]), or weak and broad, as observed in neural ensembles. Single neurons are hypothesized to be simultaneously tuned to several modalities, such as visual, auditory, and olfactory. Neurons hypothesized to be tuned to different signals are often hypothesized to integrate information from the different sources. In computational models called neural networks, such integration is the major principle of operation. The best examples of neuronal tuning can be seen in the visual, auditory, olfactory, somatosensory, and memory systems, although due to the small number of stimuli tested the generality of neuronal tuning claims is still an open question.

  1. ^ Sakai, Kuniyoshi; Miyashita, Yasushi. Neuronal tuning to learned complex forms in vision. NeuroReport 1994, 5:829-832.
  2. ^ Matteo Carandini, Jonathan B. Demb, Valerio Mante, David J. Tolhurst, Yang Dan, Bruno A. Olshausen, Jack L. Gallant and Nicole C. Rust. Do we know what the early visual system does? Journal of Neuroscience 25:10577-10597.

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search